翻訳と辞書
Words near each other
・ Strength athletics in Norway
・ Strength athletics in Sweden
・ Strength athletics in the United Kingdom and Ireland
・ Strength athletics in the United States
・ Strength in Democracy
・ Strength in Democracy candidates, 2015 Canadian federal election
・ Strength in Numbers
・ Strength in Numbers (24-7 Spyz album)
・ Strength in Numbers (38 Special album)
・ Strength in Numbers (band)
・ Strength in Numbers (Calla album)
・ Strength in Numbers (song)
・ Strength in Numbers (The Music album)
・ Strength in Unity Alliance
・ Strength level
Strength of a graph
・ Strength of Heart
・ Strength of materials
・ Strength of schedule
・ Strength of Serbia Movement
・ Strength of ships
・ Strength of Steel
・ Strength of the Sword 3
・ Strength Power Will Passion
・ Strength reduction
・ Strength tester
・ Strength tester machine
・ Strength Through Joy
・ Strength Through Vengeance
・ Strength Thru Oi!


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Strength of a graph : ウィキペディア英語版
Strength of a graph

In the branch of mathematics called graph theory, the strength of an undirected graph corresponds to the minimum ratio ''edges removed''/''components created'' in a decomposition of the graph in question. It is a method to compute partitions of the set of vertices and detect zones of high concentration of edges.
== Definitions ==

The strength \sigma(G) of an undirected simple graph ''G'' = (''V'', ''E'') admits the three following definitions:
* Let \Pi be the set of all partitions of V, and \partial \pi be the set of edges crossing over the sets of the partition \pi\in\Pi, then \displaystyle\sigma(G)=\min_\frac.
* Also if \mathcal T is the set of all spanning trees of ''G'', then
:: \sigma(G)=\max\left\\ \lambda_T\geq 0\mbox\forall e\in E\ \sum_\lambda_T\leq1\right\}.
* And by linear programming duality,
:: \sigma(G)=\min\left\\forall T\in \ \sum_y_e\geq1\right\}.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Strength of a graph」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.